

Products: Spectrum Analyzers R&S® FSL, R&S® FSP, R&S® FSQ, R&S® FSU,
Measuring Receiver R&S® FSMR, Signal Analyzer R&S® FSUP,
Network Analyzers R&S® ZVA, R&S® ZVB, R&S® ZVT, R&S® ZVL

Hints and Tricks for
Remote Control

of Spectrum and Network Analyzers

Application Note
This application note provides hints for implementing remote control programs using Rohde & Schwarz
spectrum and network analyzers. The document makes suggestions for improved remote control
performance and describes aspects of measurement synchronization in detail.

Finally the document discusses some typical challenges of remote control in production test.

Subject to change – Johannes Ganzert 07/2007 – 1EF62_0E

 General Input/Output Considerations

Contents
1 Overview ... 3
2 General Input/Output Considerations ... 3

Instrument Drivers.. 3
Generic IO Library – VISA ... 3

3 Optimizing Remote Control Operation.. 4
Display Update... 4
Continuous vs. Single Sweep .. 4

4 Common Issues and Pitfalls ... 5
Address conflicts.. 5
Wrong termination character during binary data transfer 5
Disable Auto Serial Poll ... 6
Check the Error Queue.. 6
Avoiding timeouts on long execution times 6
Timeout occurs in unexpected place ... 6

5 Measurement Synchronization ... 6
Synchronization with *WAI... 7
Synchronization with *OPC?.. 8
Synchronization with *OPC.. 9
Loops with short delay rather than permanent polling....................... 9

6 Service Request (SRQ) Handling ... 9
7 Production Test Considerations.. 12
8 Additional Information ... 13
9 Ordering information ... 13

The R&S logo, Rohde & Schwarz, and R&S are registered trademarks of Rohde & Schwarz GmbH &
Co. KG and its subsidiaries.

Microsoft Visual Basic is a registered trademark of Microsoft Corporation.

1E62_0E 2 Rohde & Schwarz

 General Input/Output Considerations

Overview

This application note describes common aspects of remote control
sequences for R&S spectrum and network analyzers. In particular, several
synchronization mechanisms are explained.

The document concludes with some hints for production test software,
where the test application is designed for maximum throughput and at the
same time must be capable of handling defective devices under test.

Programming examples in this document are written in Visual Basic 6
unless noted otherwise.

1 General Input/Output Considerations
There are various approaches to remote control. Test program software
can use instrument drivers or choose a lower level approaches by
accessing the IO library directly.

Instrument Drivers
Instrument drivers are available free of charge from the web site
http://www.rohde-schwarz.com for common T&M development
environments: LabVIEW, LabWindows/CVI, Agilent-VEE, Visual Basic,
C++, C#.

Instrument drivers use the VISA library for IO operations.

Generic IO Library – VISA
If instrument drivers are not available for a specific development
environment or if the drivers do not fulfill all user requirements, the client
application can perform remote control by means of direct calls to an IO
library and use of the SCPI command set of the instrument.

In this case, the use of the standardized VISA library is recommended,
because it makes the selections of the actual IO channel almost
transparent to the user. Thus test software can be easily migrated from one
IO channel to another (e.g. GPIB to LAN).

In the VISA library, the IO functions are the same for all supported
hardware interfaces. Only the sequence for opening a particular IO channel
varies depending on the chosen bus.

The following sequence opens a connection using GPIB and reads the ID
string from the instrument:

viOpenDefaultRM(defaultRM)
viOpen(defaultRM, “GPIB::20::INSTR”, VI_NULL, 1000, hdl)
viWrite(hdl, “*IDN?”, 5, retCount)
response$ = Space$(100)
viRead(hdl, response$, 100, retCount)

Now, if the interface is changed to LAN, only the resource string changes
in the above code:

viOpenDefaultRM(defaultRM)
viOpen(defaultRM, “TCPIP::192.168.1.100::INSTR”, VI_NULL,

1000, hdl)
viWrite(hdl, “*IDN?”, 5, retCount)
response$ = Space$(100)
viRead(hdl, response$, 100, retCount)

The VISA library is available for a variety of platforms. It can be obtained
from Rohde & Schwarz (see order number in the appendix) and several

1E62_0E 3 Rohde & Schwarz

http://www.rohde-schwarz.com/

 Optimizing Remote Control Operation

other vendors in the T&M market – Agilent Technologies, National
Instruments and others.

2 Optimizing Remote Control Operation
While it is easy to control an instrument remotely, there are some aspects
which affect the overall performance and in the end test time. In automated
test systems throughput is a key figure. The following paragraphs elaborate
on some important details in remote control operation.

Display Update
Graphical operations consume significant instrument computing resources.
Therefore in automated measurements systems, where no visual display of
the results is required, the display update can be turned off for better
performance. R&S spectrum and network analyzers switch off display
update by default, when the instrument goes into remote control operation.

For development of test programs, or if the instrument display update is
required for alignment or other purposes, the display update can be turned
on or off manually (Softkey DISP UPD) or by using the remote control
command:

SYSTem:DISPlay:UPDate ON | OFF or
SYSTem:DISPlay:UPDate 1 | 0

The state of display update (ON or OFF) is persistent as long as the
instrument is powered up. Therefore, for best performance of fully
automated operation it is recommended to switch display update OFF at
initialization of the test program.

Continuous vs. Single Sweep
In manual operation, the instrument typically performs measurements
repeatedly, i.e. it operates in continuous sweep mode. This is useful for
alignment tasks, where the instrument display immediately reflects
adjustments performed on the device under test (DUT).

For remote control operations, however, continuous sweep presents
several issues:

1. Parameter changes are slower, because the instrument firmware
must recalculate hardware settings after every single remote
control command. In single sweep mode, the remote control
command affects only the instrument’s settings database. All
hardware settings are calculated before the single sweep is
initiated. In addition, instrument response to remote control
commands is faster in single sweep mode because the instrument
processor does not share resources with the measurement task
continuously.

2. More importantly, instrument results can be inconsistent in
continuous sweep operation, because measurements values can
come from different sweeps.

3. Synchronization to the end of the sweep does not work in
continuous sweep operation. INIT;*OPC? will return immediately
and not related to sweep completion.

The following figure shows a spectrum measurement, where the sweep
time was changed between two sweeps.

1E62_0E 4 Rohde & Schwarz

 Common Issues and Pitfalls

If the test software reads the trace data under such conditions, the
resulting array of values consists of a mixture from two subsequent
measurements. The data is obviously invalid.

Also, performing marker search operations in continuous sweep mode can
lead to invalid results. In the above figure, the marker search was initiated
during a running sweep. The peak search operation is performed
instantaneously and therefore it is not guaranteed that the result leads to
the actual maximum value of the measurement. The marker position after
the search could be somewhere in the previous sweep or on the current
(incomplete) sweep.

3 Common Issues and Pitfalls

Address conflicts
Check that GPIB addresses are unique in the system. If duplicate
addresses are present, the instrument which reacts faster will try to
execute the commands. Errors in such scenarios are very difficult to
diagnose and locate.

Wrong termination character during binary data transfer
For binary data transfer the termination character must be set properly. The
default termination character <LF> can occur anywhere in a binary stream.
If the termination character is enabled, the data transfer terminates at the
first occurrence of this character. Therefore, the termination character must
be disabled and data transfer must be based on byte count instead of
termination character. When writing binary data to the instrument, an
additional command must be sent to the instrument such that it doesn’t
abort data reception upon occurrence of <LF>. This command is:
 SYST:COMM:RTER EOI

1E62_0E 5 Rohde & Schwarz

 Measurement Synchronization

Disable Auto Serial Poll
GPIB drivers include the capability to perform a serial poll automatically
when a service request occurs. This causes problems for the test software
because the result of the serial poll is no longer available to the application
software if the driver performed the serial poll automatically. To avoid this
issue, automatic serial poll should be disabled in the default driver
configuration.

Check the Error Queue
"A program that does what it should do, is not necessarily correct". At least
during program development the error queue should be checked after each
command. Especially if new commands are inserted in an existing
command line the risk is to forget a ":" or ";", which might lead to time
consuming investigations on malfunctions of the program.

Avoiding timeouts on long execution times
If the timeout value for a query command cannot be set sufficiently large, a
loop may be used instead (see "loops with short delay").

Timeout occurs in unexpected place
R&S spectrum and network analyzers have a GPIB controller, which has
an internal FIFO that can store multiple short commands. This means, that
the GPIB controller responds to the bus handshake as if commands were
already executed. As a consequence a timeout may occur at the first
command after the FIFO is full and one of the preceding commands is
blocking. This behavior is different compared to earlier generations of GPIB
interfaces.

4 Measurement Synchronization
Before a measurement result is retrieved from the instrument, one must
ensure that the instrument has completed the measurement and the result
is valid and consistent with the instrument settings. It is therefore
mandatory to synchronize the test program flow with the measurement
(sweep) completion before attempting to read any results from the
instrument.

Sweep end synchronization can only be done properly if the instrument
operates in single sweep mode. None of the subsequent synchronization
mechanism reports the sweep end correctly in continuous sweep mode. If,
for example the instrument sweeps continuously and the client application
attempts to read trace data, the resulting values might be a mixture from
different measurements.

It is generally not required to synchronize the completion of each command
(instrument setting), because the instrument firmware ensures that all
parameters are set before actually starting the measurement. However, it
may be useful to synchronize lengthy operations (e.g. calibration, mode
changes, etc.).

IEEE-488.2 defines 3 mechanisms ensure operation completion. These are
explained in the following paragraphs.

1E62_0E 6 Rohde & Schwarz

 Measurement Synchronization

Synchronization with *WAI
The simplest way to synchronize remote control commands is by
appending the IEEE-488.2 Common Command *WAI to other commands.
It is irrelevant, whether this command is directly appended to another
command or sent separately. The following pseudo-code sequences are
equivalent:

InstrumentWrite(“INIT:CONT OFF”);
InstrumentWrite(“INIT;*WAI”);
InstrumentQuery(“CALC:MARK:MAX;Y?”);

and
InstrumentWrite(“INIT:CONT OFF”);
InstrumentWrite(“INIT”);
InstrumentWrite(“*WAI”);
InstrumentQuery(“CALC:MARK:MAX;Y?”);

In both cases the command subsequent to *WAI is executed only after
sweep completion.

The following communication log illustrates the timing. In this example,
communication was performed using a LAN connection with the VXI-11
protocol:

Note that *WAI does not affect the communication with other instruments.
In the example above, the frequency setting of a second instrument is
performed immediately after the initiation of the sweep. The marker search
operation however, is delayed for 2 seconds, because the sweep time was
set to this value.

Where exactly the delay occurs, may depend on the chosen IO channel.
Due to message buffering in the case of some GPIB architectures, the
delay occurs at the read operation:

Important is the fact that the result of the synchronized operation (here
marker value) is returned upon completion of the preceding commands
(here sweep completed).

Note: Proper execution of *WAI requires that the timeout value of
the session is set to a value larger than the execution time of
commands which are to be synchronized. If the value is too
small, the program flow continues with a timeout error.

1E62_0E 7 Rohde & Schwarz

 Measurement Synchronization

This is one of many reasons, why the test software should always test IO
function status codes for success.

Synchronization with *OPC?
Another simple synchronization mechanism is based on the IEEE-488.2
Common Command *OPC?. Similar to *WAI this command can be
appended or sent separately after the command to be synchronized with.

The major difference is the fact that the result of the *OPC? Query
determines the synchronization. The communication with the instrument is
halted at the time of the Read() operation until previous commands are
completed.

If the call to the read function is omitted, no synchronization occurs and a
SCPI error will be generated, because the instrument response to the
*OPC? query was not retrieved by the client application. The instrument
returns “1” for successful completion of the preceding operation.

Conditions for the timeout value are the same like for the *WAI
mechanism, i.e. the timeout value must be larger than the execution time of
the command whose completion must be synchronized.

If a timeout occurs before operation completion, the Read() function will
return an error and the response to the *OPC? query contains “0”.

Note: In Microsoft Visual Basic 6 it is important to pre-allocate the

response buffer before reading from the instrument. Due to
automatic string length adjustment, read operations are not
performed correctly if the response buffer is not initialized to a
finite length.

Typical code sequence (VB6):
response$ = Space$(100)
viRead(hdl, response$, 100, retCount)

1E62_0E 8 Rohde & Schwarz

 Service Request (SRQ) Handling

Synchronization with *OPC
The third alternative for synchronization is the most complex and also the
most flexible one.

Similar to *WAI and *OPC? the IEEE-488.2 Common Command *OPC is
appended or sent separately after the command to be synchronized with.

Note: *OPC? does not influence the status registers, nor does it
affect the service request mechanism. In this context *OPC
and *OPC? are very different and must not be confused.

All instruments that comply to IEEE-488.2, implement the Event Status
Register (ESR). Bit 0 of this register is defined as Operation Complete bit.

Synchronization can be achieved by polling the status of the Operation
Complete bit using the query command *ESR?. A read operation on the
Event Status Register is destructive, i.e. the register is cleared after the
read operation and thus the contents cannot be retrieved multiple times.

Loops with short delay rather than permanent polling
Polling the ESR is not recommended, because it will occupy a lot of CPU
resources, resulting in slower performance of the desired function. Instead
of permanently polling for OPC in a loop, the poll routine should include a
delay in the range of the estimated execution time, and after that short
delays in order to not waste time after the OPC event occurred.

Therefore *OPC is mostly used in conjunction with the Service Request
(SRQ) mechanism, which is described in the next chapter.

5 Service Request (SRQ) Handling
The Service Request mechanism allows generic handling of asynchronous
events coming from different sources and for different reasons. The figure
below shows the principle that determines the generation of a service
request.

1E62_0E 9 Rohde & Schwarz

 Service Request (SRQ) Handling

Bits of the Status Byte (STB) are masked with the contents of the Service
Request Enable (SRE) register and combined with a logical OR operation
into the RQS/MSS (Master Status Summary) bit. If this bit is set, the
instrument issues a service request.

The controlling test software can select the potential sources for service
requests by setting the mask registers SRE and ESE accordingly. For
example, if the test program wants to be notified when the instrument
output buffer contains data or an error occurred in the instrument, the bits 4
(=MAV) and 5 (=ESB) must be enabled in the SRE register. Bits 2-5 must
be enabled in the ESE.

Before the measurement is initiated, the controller sends these commands
to the instrument:

InstrumentWrite(“*SRE 64”);
InstrumentWrite(“*ESE 60”);

The values are the decimal representation of the bits in the mask registers.

This mechanism can be used for operation complete synchronization by
enabling bit 0 in the ESE. Appending *OPC to the command to be
synchronized will cause the Operation Complete bit to be set. As a
consequence, the ESB (=event status sum bit) is set in the status byte and
if bit 5 in the SRE is enabled, it leads to a service request.

Note: The service request event does not contain information about
its source. Therefore the controller software is responsible for
determining the source and reason of the service request,
before taking further action.

The subsequent pseudo-code below shows how measurement
synchronization can be implemented using the service request mechanism.

Initialize status registers (enable the corresponding mask registers) and
select single sweep mode:

InstrumentWrite(“*CLS”); //Clear status registers
InstrumentWrite(“*SRE 32;*ESE 1”); //Enable masks
InstrumentWrite(“INIT:CONT OFF”); //Single sweep

Start measurement with *OPC:

InstrumentWrite(“INIT;*OPC”);

1E62_0E 10 Rohde & Schwarz

 Service Request (SRQ) Handling

After initiating the measurement, the controller software must wait for the
service request event to occur. A timeout can be specified.

WaitOnEvent(ServiceRequest, 3000);

Depending on the test software design, the program flow can continue after
the measurement was started. The service request will occur
asynchronously and interrupt the normal execution of the program.

If a generic service request handler is used, the routine must determine the
reason for the event.

1E62_0E 11 Rohde & Schwarz

 Production Test Considerations

Here is an example of a generic service request handler. This example is
written in C#:

6 Production Test Considerations
In production environments the test software must cope with failing devices
under test without significantly interrupting the production flow. Under these
conditions the test program must handle typically 2 scenarios that fall
outside of the regular pass/fail limit check:

1. A triggered measurement doesn’t complete if the trigger condition
(e.g. low signal level) is not satisfied.

2. A measurement result may not be available if the signal doesn’t
comply to certain standards.

Both of the above topics occur in production test of devices for digital
communications (e.g. IEEE-802.11 signals).

In the first case (trigger failed) the measurement (sweep) will not complete.
Depending on the synchronization mechanism, this condition results in a
timeout (*WAI or *OPC?) or the operation complete event (if service
request is configured for that) never occurs.

1E62_0E 12 Rohde & Schwarz

 Additional Information

Consequently the test software must verify for operation completion (sweep
finished) before retrieving results (e.g. trace data). In the case of *OPC?
this task can be accomplished with the subsequent pseudo-code:

InstrumentWrite(“INIT;*OPC?”);
InstrumentRead(response);
If (response == ‘1’)
 traceData = InstrumentQuery(“TRAC? TRACE1”);
End if

The second scenario is more complex. Assuming that modulation
characteristics are to be measured on a bursted signal, it can very well be
that the trigger condition occurs but the signal modulation is not valid. If the
user tries to read for example EVM data, the query function times out
because the instrument has no data available.

In order to avoid the timeout, the software can test the status of the MAV
bit (message available) in the status register (STB) before attempting to
read the value.

Retrieving the contents of the status byte must be done by means of a
serial poll operation. Using the standard *STB? query command would
overwrite the contents of the instrument output buffer. Furthermore, the
serial poll must be done after the query command was sent to the
instrument and before the Read() function is called. The following pseudo-
code illustrates this sequence:

InstrumentWrite(“FETC:BURS:EVM:ALL:MAX?”);
ReadSTB(statusByte); // Perform serial poll
If (statusByte & MAV) // Check for message available
 InstrumentRead(response);
End if

7 Additional Information
Please send any comments or suggestions about this application note to
TM-Applications@rohde-schwarz.com.

For additional information, product brochures and data sheets, please see
the Rohde & Schwarz website www.rohde-schwarz.com.

8 Ordering information
VISA Library
VISA IO Libraries Version 14.2 1308.9464.00

ROHDE & SCHWARZ GmbH & Co. KG . Mühldorfstraße 15 . D-81671 München . Postfach 80 14 69 . D-81614 München .

Tel (089) 4129 -0 . Fax (089) 4129 - 13777 . Internet: http://www.rohde-schwarz.com

 This application note and the supplied programs may only be used subject to the conditions of use set forth in the
download area of the Rohde & Schwarz website.

1E62_0E 13 Rohde & Schwarz

mailto:TM-Applications@rohde-schwarz.com
http://www.rohde-schwarz.com/
http://www.rohde-schwarz.com/

	General Input/Output Considerations
	Instrument Drivers
	Generic IO Library – VISA

	Optimizing Remote Control Operation
	Display Update
	Continuous vs. Single Sweep

	Common Issues and Pitfalls
	Address conflicts
	Wrong termination character during binary data transfer
	Disable Auto Serial Poll
	Check the Error Queue
	Avoiding timeouts on long execution times
	Timeout occurs in unexpected place

	Measurement Synchronization
	Synchronization with *WAI
	Synchronization with *OPC?
	Synchronization with *OPC
	Loops with short delay rather than permanent polling

	Service Request (SRQ) Handling
	Production Test Considerations
	Additional Information
	Ordering information

